GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Amit Kumar

AI/NLP Engineer at E42.ai

1. Introduction

- 2. GaLore: Gradient Low-Rank Projection
- 3. ADAM with GaLore
- 4. Experimental Results
- 5. Conclusion

Introduction

- Pre-training a LLaMA 7B model from scratch with a single batch size necessitates a minimum of 58 GB memory allocation.
- This breakdown includes 14GB for trainable parameters, 42GB for Adam optimizer states and weight gradients, and 2GB for activations.
- Consequently, conducting such training is impractical on consumer-level GPUs like the NVIDIA RTX 4090, which offers 24GB memory capacity.

$$M_t = \beta_1 M_{t-1} + (1 - \beta_1) G_t$$
$$V_t = \beta_2 V_{t-1} + (1 - \beta_2) G_t^2$$
$$\tilde{G}_t = M_t / \sqrt{V_t + \epsilon}$$

Memory allocation for LLaMa 7B

- Low-Rank Adaptation reparameterizes weight matrix $W \in R_{m \times n}$, into $W = W_0 + BA$, where W_0 is a frozen full-rank matrix and $B \in R_{m \times r}$, $A \in R_{r \times n}$ are additive low-rank adaptors to be learned.
- ReLoRA is also used in pre-training, by periodically updating W0 using previously learned low-rank adaptors.
- Drawback of LORA:
 - 1. the optimal weight matrices may not be low-rank.
 - 2. the reparameterization changes the gradient training dynamics.

GaLore: Gradient Low-Rank Projection

$$W_T = W_0 + \eta \sum_{t=0}^{T-1} \tilde{G}_t$$

Full Rank:

$$= W_0 + \eta \sum_{t=0}^{T-1} \rho_t(G_t)$$

🕂 GaLore:

$$\tilde{G}_t = P_t \rho_t (P_t^\top G_t Q_t) Q_t^\top \qquad G_t = USV^\top \approx \sum_{i=1}^r s_i u_i v_i^\top$$
$$\in \mathbb{R}^{m \times r} \qquad P_t = [u_1, u_2, ..., u_r], \quad Q_t = [v_1, v_2, ..., v_r]$$

$$W_T = W_0 + \eta \sum_{t=0}^{T-1} \tilde{G}_t$$
$$\tilde{G}_t = P_t \rho_t (P_t^\top G_t Q_t) Q_t^\top$$
$$W_t = W_0 + \Delta W_{T_1} + \Delta W_{T_2} + \ldots + \Delta$$

 $\Delta W_{T_i} = \eta \sum_{t=0}^{T_i-1} ilde{G}_t$

Algorithm 2: Adam with GaLore

Input: A layer weight matrix $W \in \mathbb{R}^{m \times n}$ with $m \leq n$. Step size η , scale factor α , decay rates β_1, β_2 , rank r, subspace change frequency T.

Initialize first-order moment $M_0 \in \mathbb{R}^{n \times r} \leftarrow 0$ Initialize second-order moment $V_0 \in \mathbb{R}^{n \times r} \leftarrow 0$

Initialize step $t \leftarrow 0$

repeat

 $G_t \in \mathbb{R}^{m \times n} \leftarrow -\nabla_W \varphi_t(W_t)$ if $t \mod T = 0$ then $U, S, V \leftarrow SVD(G_t)$ $P_t \leftarrow U[:,:r]$ {Initialize left projector as m < n} else $P_t \leftarrow P_{t-1}$ {Reuse the previous projector} end if $R_t \leftarrow P_t^\top G_t$ {Project gradient into compact space} UPDATE (R_t) by Adam $M_t \leftarrow \beta_1 \cdot M_{t-1} + (1 - \beta_1) \cdot R_t$ $V_t \leftarrow \beta_2 \cdot V_{t-1} + (1 - \beta_2) \cdot R_t^2$ $M_t \leftarrow M_t / (1 - \beta_1^t)$ $V_t \leftarrow V_t / (1 - \beta_2^t)$ $N_t \leftarrow M_t / (\sqrt{V_t} + \epsilon)$ $\tilde{G}_{t} \leftarrow \alpha \cdot PN_{t}$ {Project back to original space} $W_t \leftarrow W_{t-1} + n \cdot \tilde{G}_t$ $t \leftarrow t + 1$ until convergence criteria met return W_t

Table 1: Comparison between GaLore and LoRA. Assume $W \in \mathbb{R}^{m \times n}$ $(m \leq n)$, rank r.

	GaLore	LoRA
Weights	mn	mn + mr + nr
Optim States	mr + 2nr	2mr + 2nr
Multi-Subspace	1	×
Pre-Training	1	×
Fine-Tuning	1	1

Ablation study of GaLore

- 1. GaLore significantly reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for large-scale LLM pre-training and fine-tuning.
- 2. Training with a rank of 128 using 80K steps achieves a lower loss than training with a rank of 512 using 20K steps. This shows that GaLore can be used to trade-off between memory and computational cost.
- 3. This can help us solve many current challenges we're facing in the existing architecture on the platform, such as summarization, querying a large number of knowledge bases at once with efficient memory requirements, and fewer components.

Thank You