GaLore: Memory-Efficient LLM Training by Gradient Low-Rank

Projection

Amit Kumar

AI/NLP Engineer at E42.ai

1/12

Table of contents

1. Introduction

2. GaLore: Gradient Low-Rank Projection
3. ADAM with Gal.ore

4. Experimental Results

5. Conclusion

2/12

Introduction

® Pre-training a LLaMA 7B model from scratch with a single batch size necessitates a
minimum of 58 GB memory allocation.

® This breakdown includes 14GB for trainable parameters, 42GB for Adam optimizer
states and weight gradients, and 2GB for activations.

® Consequently, conducting such training is impractical on consumer-level GPUs like
the NVIDIA RTX 4090, which offers 24GB memory capacity.

M; = BiMi—1 + (1 — B1)Gy
Vi = B2Vi1 + (1 — B2)Gi

Gy = M, /\/V, + €

3/12

Memory allocation for LLaMa 7B

BF16

Adafactor

8-bit Adam

8-bit GaLore

B Weight
| | | [Activation
[Optimization
o 1 Weight Gradient
RTX 4090 1 Others
100 20 30 40 50 60 70 80
Memory Cost (GB)

4/12

Exploring LORA: Constraints and Challenges

® Low-Rank Adaptation reparameterizes weight matrix W € R,,xy, into
W = Wy + BA, where Wy is a frozen full-rank matrix and B € R, xr, A € Ry« are
additive low-rank adaptors to be learned.

® ReLoRA is also used in pre-training, by periodically updating W0 using previously
learned low-rank adaptors.

o Drawback of LORA:

1. the optimal weight matrices may not be low-rank.
2. the reparameterization changes the gradient training dynamics.

5/12

Galore: Gradient Low-Rank Projection

T-1
WT - WO + n Z Gt
t=0 7
Full Rank: G: = —Vwe (W) € R™*"

A

=Wo+n Z pt(Gt)

t=0
Galore:
ét = Ptpt(PtTGtQt)Q;r Gt =S USVT ~ Zsiuiv:
=1
S Rmxn Pt . [u17u27"'7u7‘]3 Qt = [U]_,’UQ,

€ R#xr R

6/12

+
. Galore:

T-1
Wr=Wy+n Z ét
)] =0] AW,
Gy = Pipi(P, GiQ4)Qy -
G\
\

Wy =Wo+ AWp, + AWp, + ...+ AWrp,
Wo + AWy + AW,
AWTi - WZTI 1 WO

7/12

Algorithm 2: Adam with GaLore

Input: A layer weight matrix W € R™*™ with m < n. Step size 7,
scale factor v, decay rates 31, 32, rank 7, subspace change frequency
T.

Initialize first-order moment M € R"*" « 0
Initialize second-order moment Vj; € R"*" « 0

Initialize step t «— 0
repeat
G € R™X™ — —Vywpr(We)

if t mod 7" = 0 then
U,S,V < SVD(Gy)

P« U[:y: 7] {Initialize left projector as m < n}
else

P+ Py {Reuse the previous projector}
end if
Ry + PG, {Project gradient into compact space }

UPDATE(R;) by Adam
M« Br-M—1+(1—pB1)-Re
Vi ¢ B2 Vi1 + (1 - B2) - R?
My +— My/(1 — ﬂ:)
Vi Vi/(1- B5)
N¢ + My /(VVi +€)

Gt +a- PN, {Project back to original space}
Wi Wit +1- Gy
te—t+1
until convergence criteria met
return W; 8/12

Experimental Results

Table 1: Comparison between GaLore and LoRA. Assume W €
R™*™ (m < n), rank r.

GalLore LoRA
Weights mn mn +mr + nr
Optim States mr + 2nr 2mr + 2nr
Multi-Subspace v X
Pre-Training v X

Fine-Tuning v v

9/12

Perplexity ()

50

;(10k Steps
- 20k Steps
4014 40k Steps
:x(~ %= 60k Steps
\\

\\\;2\ == 80k Steps

30 T \\\\

~ \\\\¢ ~~~~~~~~~~~
-~ -.-~.§
20 'b T T lb T
No!
LY v oY
#Rank

Ablation study of GaLore

10/12

Conclusion

1. GaLore significantly reduces memory usage by up to 65.5% in optimizer states while
maintaining both efficiency and performance for large-scale LLM pre-training and
fine-tuning.

2. Training with a rank of 128 using 80K steps achieves a lower loss than training with a
rank of 512 using 20K steps. This shows that GaLore can be used to trade-off
between memory and computational cost.

3. This can help us solve many current challenges we’re facing in the existing
architecture on the platform, such as summarization, querying a large number of
knowledge bases at once with efficient memory requirements, and fewer components.

11/12

Thank You

	Introduction
	GaLore: Gradient Low-Rank Projection
	ADAM with GaLore
	Experimental Results
	Conclusion

