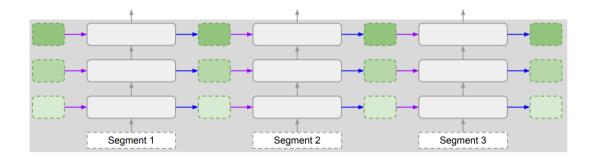
Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

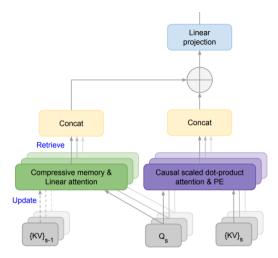
Amit Kumar

AI/NLP Engineer at E42.ai

- 1. Introduction
- 2. Infini-attention
- 3. Deep dive in Infini-attention
- 4. Results
- 5. Conclusion

- Efficient Scaling: Introduces a method to scale Transformer-based LLMs to handle infinitely long inputs with limited memory and computation.
- **Compressive Memory**: Infini-attention incorporates a compressive memory into the standard attention mechanism.
- **Combined Mechanisms**: It combines masked local attention and long-term linear attention within a single Transformer block.
- **Performance**: Demonstrates effectiveness on benchmarks like 1M sequence length context retrieval and 500K length book summarization.
- Minimal Memory: The approach uses minimal bounded memory parameters.





• Infini-attention has an additional compressive memory with linear attention for processing infinitely long contexts. KV_{s-1} and KV_s are attention key and values for current and previous input segments, respectively and Qs the attention queries.

A single head in the vanilla MHA computes its attention context $\mathbf{A}_{dot} \in \mathbb{R}^{N \times d_{value}}$ from sequence of input segments $\mathbf{X} \in \mathbb{R}^{N \times d_{model}}$ as follows. First, it computes attention query, key, and value states:

$$\mathbf{K} = \mathbf{X}\mathbf{W}_K, \quad \mathbf{V} = \mathbf{X}\mathbf{W}_V, \quad \mathbf{Q} = \mathbf{X}\mathbf{W}_Q.$$

Here, $\mathbf{W}_K \in \mathbb{R}^{d_{\text{model}} \times d_{\text{key}}}$, $\mathbf{W}_V \in \mathbb{R}^{d_{\text{model}} \times d_{\text{value}}}$ and $\mathbf{W}_Q \in \mathbb{R}^{d_{\text{model}} \times d_{\text{key}}}$ are trainable projection matrices. Then, the attention context is calculated as a weighted average of all other values as

$$\mathbf{A}_{ ext{dot}} = ext{softmax} \left(rac{\mathbf{Q} \mathbf{K}^T}{\sqrt{d_{ ext{model}}}}
ight) \mathbf{V}.$$

Memory retrieval operation

QKT - similarity (dotprodu Ai = softmax (QK) V = j=1 sim (Qi ki) Vi Based on softmax we i sim (Qi, ki) Can decompose like this) estimate = o(Qi) ~ (Ki) Vi Skernel trick ? o (n) = ELU (x) + I $z' \sigma(Q;) \sigma(k_i)$ (non-lineacity) = - (Qi) = = = (ki) Vi = o (Qi) & o (Kj) & RNN Formulation } = o (Qi) Mi-1 0-(Qi) Z:-1

In Infini-attention, we retrieve new content $\mathbf{A}_{\text{mem}} \in \mathbb{R}^{N \times d_{\text{value}}}$ from the memory $\mathbf{M}_{s-1} \in \mathbb{R}^{d_{\text{key}} \times d_{\text{value}}}$ by using the query $\mathbf{Q} \in \mathbb{R}^{N \times d_{\text{key}}}$ as:

$$\mathbf{A}_{\text{mem}} = \frac{\sigma(\mathbf{Q})\mathbf{M}_{s-1}}{\sigma(\mathbf{Q})\mathbf{z}_{s-1}}$$

Here, $\sigma \in \mathbb{R}^{d_{\text{key}}}$ is a nonlinear activation function.

• Once the retrieval is done, we update the memory and the normalization term with the new KV entries and obtain the next states as

$$\mathbf{M}_{s} \leftarrow \mathbf{M}_{s-1} + \sigma(\mathbf{K}^{T}\mathbf{V})$$
$$\mathbf{z}_{s} \leftarrow \mathbf{z}_{s-1} + \sum_{t=1}^{N} \sigma(\mathbf{K}^{T})$$

• **Delta rule**: The delta rule attempts a slightly improved memory update by first retrieving existing value entries and subtracting them from the new values before applying the associative bindings as new update.

$$\mathbf{M}_s \leftarrow \mathbf{M}_{s-1} + \sigma(\mathbf{K}^T)(\mathbf{V} - \frac{\sigma(\mathbf{K})\mathbf{M}_{s-1}}{\sigma(\mathbf{K})\mathbf{z}_{s-1}})$$

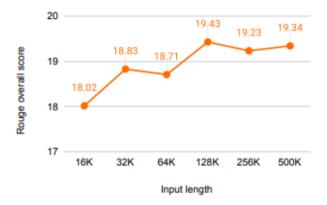
Long-term context injection: We aggregate the local attention state \mathbf{A}_{dot} and memory retrieved content \mathbf{A}_{mem} via a learned gating scalar β :

$$\mathbf{A} = \operatorname{sigmoid}(\beta) \odot \mathbf{A}_{\operatorname{mem}} + (1 - \operatorname{sigmoid}(\beta)) \odot \mathbf{A}_{\operatorname{dot}}.$$

• 500K length book summarization (BookSum) results. The BART, PRIMERA and Unlimiformer results are from Bertsch et al. (2024).

Model	Rouge-1	Rouge-2	Rouge-L	Overall
BART	36.4	7.6	15.3	16.2
BART + Unlimiformer	36.8	8.3	15.7	16.9
PRIMERA	38.6	7.2	15.6	16.3
PRIMERA + Unlimiformer	37.9	8.2	16.3	17.2
Infini-Transformers (Linear)	37.9	8.7	17.6	18.0
Infini-Transformers (Linear + Delta)	40.0	8.8	17.9	18.5

Experimental Results



• Infini-Transformers obtain better Rouge overall scores with more book text provided as input.

- 1. **Memory Matters**: Having a good memory system is essential not just for understanding long texts with Large Language Models (LLMs), but also for other cognitive tasks like reasoning, planning, and learning how to learn.
- 2. Introducing a Memory Module: This work introduces a memory module that closely integrates with the standard attention mechanism used in LLMs. This modification helps LLMs handle very long contexts using limited memory and computational resources.
- 3. **Scalability**: The proposed approach allows LLMs to effectively process extremely long input sequences, up to a million tokens, while still outperforming existing methods on tasks like language modeling and summarization of books.
- 4. Generalization: The approach also demonstrates promising generalization capabilities across different lengths of input sequences. For example, a model trained on shorter sequences could effectively solve problems involving much longer sequences.

Thank You