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® Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood
serum measurements were obtained for each of n = 442 diabetes patients, as well as the
response of interest, a quantitative measure of disease progression one year after baseline.
® Number of Attributes: First 10 columns are numeric predictive values
® Attribute Information:
- Age
- Sex
- Body mass index
- Average blood pressure
- S1 (serum measurement 1)
- S2 (serum measurement 2)
- S3 (serum measurement 3)
- S4 (serum measurement 4)
- S5 (serum measurement 5)
- S6 (serum measurement 6)
® Target: Column 11 is a quantitative measure of disease progression one year after baselings



® This assumes that there is a linear relationship between the predictors (e.g. independent
variables or features) and the response variable (e.g. dependent variable or label). This
also assumes that the predictors are additive.

® There may not just be a linear relationship among the data.

® |f there doesn't exist linear relationship then the predictions will be extremely inaccurate
because our model is underfitting. This is a serious violation that should not be ignored.
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Linearity(Sample Data)

Actual vs. Predicted
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Normality of the Error Terms

® This assumes that the error terms of the model are normally distributed.

® A violation of this assumption could cause issues with either shrinking or inflating our
confidence intervals.

® There are a variety of ways to do so, but we'll look at both a histogram and the p-value
from the Anderson-Darling test for normality.
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Anderson-Darling test

® The hypotheses for the Anderson-Darling test are:
HO: The data comes from a normal distribution.
H1: The data dges not come from a normal distribution.

AD=—n— 3—1;(21 — D[ F) +In(1 — F(X,_ s )]

® Where: n = the sample size, F(x) = CDF for the normal distribution, i = the ith sample,
calculated when the data is sorted in ascending order
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Anderson-Darling test(Sample Data)

® p-value from the test - 0.7835494346512862
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Anderson-Darling test(Diabetes Data)

® p-value from the test - 0.43265797239371145
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No Multicollinearity among Predictors

® This assumes that the predictors used in the regression are not correlated with each other.

® Multicollinearity causes issues with the interpretation of the coefficients. Specifically, we
can interpret a coefficient as “an increase of 1 in this predictor results in a change of
(coefficient) in the response variable, holding all other predictors constant.”

® This becomes problematic when multicollinearity is present because we can't hold
correlated predictors constant.
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Variance inflation factor on Diabetes Data

® age: 1.2173065764321338
sex: 1.2780725459826972
bmi: 1.5094458375317008
bp: 1.4594285821794586
sl: 59.20378568651294
s2: 39.19437938862489
s3: 15.402352175616604
s4: 8.89098622497626
sb: 10.076221589049254
s6: 1.4846225872940022

® 4 cases of possible multicollinearity
0 cases of definite multicollinearity
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Homoscedasticity

® This assumes homoscedasticity, which is the same variance within our error terms.

® Heteroscedasticity, the violation of homoscedasticity, occurs when we don’t have an even
variance across the error terms.

® |t happens when our model may be giving too much weight to a subset of the data,
particularly where the error variance was the largest.

® The confidence intervals will be either too wide or too narrow.

® Residuals should have relative constant variance.
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® [nitial Data:
- Array of Response Y, shape n*1
- Array of Predictor X, shape n*p

® Goal:
- Find a model M, shape p*1 to write Y~XM

® Quality Measurement
- Residual R(M)=Y - XM, shape n*1
- Residual Sum of Square RSS(M)=R 'R
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® Gauss-Markov: My is the unique unbiased minimizer of RSS(M)
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® Best fit M¢ should minimize error
0 = RSS/(Mf ) = -2XT(Y-XMy) = -2XTY + 2X XM
® 5o the best fitting model Mr solves a linear equation
(XTX)Mf = XTY
Mr = (XTX)"1XTY
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Best Linear fit ?

® Y=25.0012x1 + 0.0006x2 + 8.992x3 + .... — 387.345x1000
Y =~22.006x1 + 8.7532x3 — 383.345x1000
Y'~21.0012x1 — 360.345x1000
Y=0

Practically we must balance accuracy against simplicity.
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Best Linear fit 7 New Goal

® Minimize RSS(M) among all M of a given complexity

® How to measure complexity? Need a norm
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Curse of Dimensionality

if n = 2, then (0.90)" = 0.81
if n = 3, then (0.90)" = 0.729
if n = 10000, then (0.90)" = 2.66 * 10458

Curse of Dimensionality means L; is almost Lg
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LARS

® Fix a budget of ||M||,, then Minimize RSS(M)
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LARS Algorithm

Algorithm 3.2 Least Angle Regression.

1. Standardize the predictors to have mean zero and unit norm. Start
with the residual r =y — ¥, 51, 52

. Find the predictor x; most correlated with r.

3. Move §; from 0 towards its least-squares coefficient (x;, r), until some
other competitor x; has as much correlation with the current residual
as does x;.

. Move ; and [3; in the direction defined by their joint least squares
coefficient of the current residual on (x;,x;), until some other com-
petitor x; has as much correlation with the current residual.

. Continue in this way until all p predictors have been entered. After
min(N — 1, p) steps, we arrive at the full least-squares solution.




LARS Algorithm

® Assume standardized predictors in the model (mean 0 and unit variance)

1.
2.

Start with no predictors in the model

Find the predictor most correlated to the residual (equivalently, the variable making least
angle with the residual)

Keep moving in the direction of the most correlated predictor until another predictor
becomes equally correlated with the residual.

Move in a direction equiangular to both the predictors

Continue until all the predictors are in the model
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Modification of LARS from LASSO

® |f a non-zero coefficient hits zero, drop its variable from the active set of variables and
recompute the current joint least squares direction
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The End
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