Least Angle Regression on Diabetes Dataset

Amit Kumar

Machine Learning and Computing Department of Mathematics Indian Institute of Space Science and Technology, Trivandrum

July 15, 2021

1. Analysis of Dataset

2. LARS

Dataset

- Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease progression one year after baseline.
- Number of Attributes: First 10 columns are numeric predictive values
- Attribute Information:
 - Age
 - Sex
 - Body mass index
 - Average blood pressure
 - S1 (serum measurement 1)
 - S2 (serum measurement 2)
 - S3 (serum measurement 3)
 - S4 (serum measurement 4)
 - S5 (serum measurement 5)
 - S6 (serum measurement 6)
- Target: Column 11 is a quantitative measure of disease progression one year after baseline e_{26}

- This assumes that there is a linear relationship between the predictors (e.g. independent variables or features) and the response variable (e.g. dependent variable or label). This also assumes that the predictors are additive.
- There may not just be a linear relationship among the data.
- If there doesn't exist linear relationship then the predictions will be extremely inaccurate because our model is underfitting. This is a serious violation that should not be ignored.

Linearity(Sample Data)

Linearity(Diabetes Data)

- This assumes that the error terms of the model are normally distributed.
- A violation of this assumption could cause issues with either shrinking or inflating our confidence intervals.
- There are a variety of ways to do so, but we'll look at both a histogram and the p-value from the Anderson-Darling test for normality.

- The hypotheses for the Anderson-Darling test are: H0: The data comes from a normal distribution. H1: The data does not come from a normal distribution. $AD = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) [\ln F(X_i) + \ln(1 - F(X_{n-i+1}))]$
- Where: n = the sample size, F(x) = CDF for the normal distribution, i = the ith sample, calculated when the data is sorted in ascending order

Anderson-Darling test(Sample Data)

• p-value from the test - 0.7835494346512862

Anderson-Darling test(Diabetes Data)

Distribution of Residuals 0.007 0.006 0.005 Density 0.004 0.003 0.002 0.001 0.000 -50 50 100 -200 -150 -100 150 200 Residuals

• p-value from the test - 0.43265797239371145

No Multicollinearity among Predictors

- This assumes that the predictors used in the regression are not correlated with each other.
- Multicollinearity causes issues with the interpretation of the coefficients. Specifically, we can interpret a coefficient as "an increase of 1 in this predictor results in a change of (coefficient) in the response variable, holding all other predictors constant."
- This becomes problematic when multicollinearity is present because we can't hold correlated predictors constant.

Variance inflation factor on Diabetes Data

- age: 1.2173065764321338 sex: 1.2780725459826972
 - bmi: 1.5094458375317008
 - bp: 1.4594285821794586
 - s1: 59.20378568651294
 - s2: 39.19437938862489
 - s3: 15.402352175616604
 - s4: 8.89098622497626
 - s5: 10.076221589049254
 - s6: 1.4846225872940022
- 4 cases of possible multicollinearity 0 cases of definite multicollinearity

- This assumes homoscedasticity, which is the same variance within our error terms.
- Heteroscedasticity, the violation of homoscedasticity, occurs when we don't have an even variance across the error terms.
- It happens when our model may be giving too much weight to a subset of the data, particularly where the error variance was the largest.
- The confidence intervals will be either too wide or too narrow.
- Residuals should have relative constant variance.

- Initial Data:
 - Array of Response Y, shape n*1
 - Array of Predictor X, shape n*p
- Goal:
 - Find a model M, shape p*1 to write $Y \approx XM$
- Quality Measurement
 - Residual R(M) = Y XM, shape n*1
 - Residual Sum of Square $RSS(M) = R^T R$

Best Linear fit

• Gauss-Markov: *M_f* is the unique unbiased minimizer of RSS(M)

- Best fit M_f should minimize error $0 = RSS_{f}(M_f) = -2X^{T}(Y-XM_f) = -2X^{T}Y + 2X^{T}XM_f$
- so the best fitting model M_f solves a linear equation

$$(X^T X)M_f = X^T Y$$

 $M_f = (X^T X)^{-1}X^T Y$

• $Y \approx 25.0012 \times 1 + 0.0006 \times 2 + 8.992 \times 3 + \dots - 387.345 \times 1000$ $Y \approx 22.006 \times 1 + 8.7532 \times 3 - 383.345 \times 1000$ $Y \approx 21.0012 \times 1 - 360.345 \times 1000$ $Y \approx 0$

Practically we must balance accuracy against simplicity.

Best Linear fit ? New Goal

- Minimize RSS(M) among all M of a given complexity
- How to measure complexity? Need a norm $\|v\|_{L_2}$ $\|v\|_{L_1}$ $\|v\|_{L_0}$

$$\sqrt{|v_1|^2 + \dots + |v_n|^2}$$
 $|v_1| + \dots + |v_n|$ # of nonzero terms

Curse of Dimensionality

- if n = 2, then $(0.90)^n = 0.81$
- if n = 3, then $(0.90)^n = 0.729$
- if n = 10000, then $(0.90)^n = 2.66 * 10^{-458}$
- Curse of Dimensionality means L_1 is almost L_0

LARS

• Fix a budget of $||M||_{L_1}$ then Minimize RSS(M)

• $E_t(M) = 1/2*RSS(M) + t ||M||_{L_1}$

LARS Algorithm

Algorithm 3.2 Least Angle Regression.

- 1. Standardize the predictors to have mean zero and unit norm. Start with the residual $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}, \beta_1, \beta_2, \dots, \beta_p = 0.$
- 2. Find the predictor \mathbf{x}_j most correlated with \mathbf{r} .
- 3. Move β_j from 0 towards its least-squares coefficient $\langle \mathbf{x}_j, \mathbf{r} \rangle$, until some other competitor \mathbf{x}_k has as much correlation with the current residual as does \mathbf{x}_j .
- 4. Move β_j and β_k in the direction defined by their joint least squares coefficient of the current residual on $(\mathbf{x}_j, \mathbf{x}_k)$, until some other competitor \mathbf{x}_l has as much correlation with the current residual.
- 5. Continue in this way until all p predictors have been entered. After $\min(N-1, p)$ steps, we arrive at the full least-squares solution.

- Assume standardized predictors in the model (mean 0 and unit variance)
 - $1. \ \mbox{Start}$ with no predictors in the model
 - 2. Find the predictor most correlated to the residual (equivalently, the variable making least angle with the residual)
 - 3. Keep moving in the direction of the most correlated predictor until another predictor becomes equally correlated with the residual.
 - 4. Move in a direction equiangular to both the predictors
 - 5. Continue until all the predictors are in the model

• If a non-zero coefficient hits zero, drop its variable from the active set of variables and recompute the current joint least squares direction

Result

- 1. Efron, Bradley, et al. "Least angle regression." The Annals of statistics32.2 (2004): 407-499.
- 2. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer, 2008.

The End