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Introduction

® To unleash the full potential of pretrained LLMs, they should be able to efficiently
and accurately perform long sequence generation. For example, an ideal ChatBot
assistant can stably work over the content of recent day-long conversations.

® The longest acceptable sequence length for lengthy inputs remains finite, which
prevents these models from being deployed for extended periods of time.
® When applying LLMs for infinite input streams, two primary challenges arise:
1. During the decoding stage, Transformer-based LLMs cache the Key and Value states
(KV) of all previous tokens, which can lead to excessive memory.
2. Existing models have limited length extrapolation abilities, i.e., their performance
degrades when the sequence length goes beyond the attention window size set during
pre-training.
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Can we deploy an LLM for infinite-length inputs without sacrificing efficiency and
performance?
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StreamingLLM vs. ex
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Attention sink
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Figure 2: V1suahzat10n of the average attention loglts in Llama-2-7B over 256 sentences each w1th a length
of 16. Observations include: (1) The attention maps in the first two layers (layers 0 and 1) exhibit the "local"
pattern, with recent tokens receiving more attention. (2) Beyond the bottom two layers, the model heavily attends
to the initial token across all layers and heads.

o 2 8 10 12 1 4 6 8 10 12 14

6/11



StreamingLLM approach

Why do LLLMs break when removing inifial tokens’ KV? We visualize attention maps from
all layers and heads of the Llama-2-7B and models in Figure 2. We find that, beyond the bottom
two layers, the model consistently focuses on the initial tokens across all layers and heads. The
implication is clear: removing these initial tokens” KV will remove a considerable portion of the
denominator in the SoftMax function (Equation 1) in attention computation. This alteration leads to a
significant shift in the distribution of attention scores away from what would be expected in normal
inference settings.
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There are two possible explanations for the importance of the initial tokens in language modeling:
(1) Either their semantics are crucial, or (2) the model learns a bias towards their absolute position.
To distinguish between these possibilities, we conduct experiments (Table 1), wherein the first four
tokens are substituted with the linebreak token “\n". The observations indicate that the model still
significantly emphasizes these initial linebreak tokens. Furthermore, reintroducing them restores
the language modeling perplexity to levels comparable to having the original initial tokens. This
suggests that the absolute position of the starting tokens, rather than their semantic value, holds
greater significance.
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Window attention has poor performance on long text. The perplexity is restored when we
reintroduce the initial four tokens alongside the recent 1020 tokens (4+1020). Substituting
the original four initial tokens with linebreak tokens (4+1020) achieves comparable

perplexity restoration.
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Conclusion

Deploying LLMs in streaming apps is crucial but has challenges. Window attention helps
but falters when tokens are excluded. Streamingl.LM, a simple solution to handle long
texts without fine-tuning.

® StreamingLLM uses ”attention sinks” with recent tokens.
® [t can model texts up to 4 million tokens efficiently.

® Pre-training with a dedicated sink token enhances streaming performance.

StreamingLLM separates pre-training window size from text generation length for
seamless streaming LLM deployment.
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