Latent Variable Models for Dimensionality Reduction

Amit Kumar

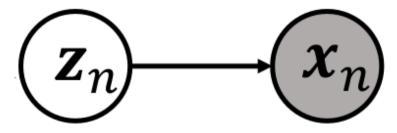
Machine Learning and Computing Department of Mathematics Indian Institute of Space Science and Technology, Trivandrum

July 15, 2021

- 1. Latent Variable Model
- 2. Probabilistic PCA (PPCA) Intro
- 3. EM algorithm
- 4. PPCA

Latent Variable

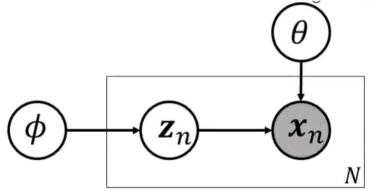
• In generative model in unsupervised learning each data point x_n is associated with a latent variable.



- Clustering: The cluster id z_n (discrete, or a K-dim one-hot rep, or a vector of cluster membership probabilities)
- Dimensionality reduction: The low-dim representation $z_n \in R^K$

Generative Models with Latent Variables

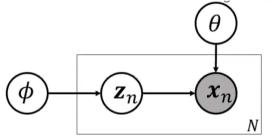
• A typical generative model with latent variables might look like this



- $p(z_n | \phi)$: A suitable distribution based on the nature of z_n .
- $p(x_n|z_n, \theta)$: A suitable distribution based on the nature of x_n .
- In this generative model, observations x_n assumed generated via latent variables z_n .
- The unknowns in such latent var models (LVMs) are of two types
 - Global variables: Shared by all data points (heta and ϕ in the previous diagram)
 - Local variables: Specific to each data point $(z_n$'s in the previous diagram)

Parameter Estimation for Generative LVM

• how do we estimate the parameters of a generative LVM?



- we can make a guess what the value of each z_n and then estimate θ and ϕ .
- The guess about z_n can be in one of the two forms
 - A "hard" guess a fixed value (some "optimal" value of the random variable z_n)
 - The "expected" value $\mathbb{E}[z_n]$ of the random variable z_n .

Parameter Estimation for Generative LVM

- Can we estimate parameters (θ , ϕ) = Θ (say) of an LVM without estimating z_n ?
- In principle yes, but it is harder
- Given N observations, x_n , n= 1,2, ... , N, the MLE problem for Θ will be

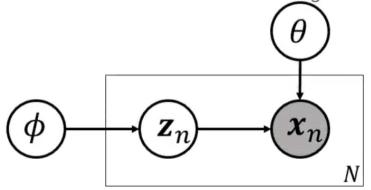
$$\operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \log p(\boldsymbol{x}_{n} | \Theta) = \operatorname{argmax}_{\Theta} \sum_{n=1}^{N} \log \sum_{\boldsymbol{z}_{n}} p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} | \Theta)$$

•
$$p(x_n, z_n | \Theta) = p(z_n | \phi) p(x_n | z_n, \theta)$$

• The log of sum doesn't give us a simple expression; MLE can still be done using gradient based methods but update will be complicated. ALT-OPT or EM make it simpler by using guesses of z_n 's

Probabilistic Principal Component Analysis (PPCA)

- Probabilistic PCA (PPCA) is example of a generative latent var model
- Assume a K-dim latent var z_n mapped to a D-dim observation x_n via a prob. mapping



• $p(z_n|\phi) = \mathcal{N}(0, I_k)$

• Probabilistic mapping means that will be not exactly but somewhere around the mean.

 $p \times K \text{ mapping matrix} \quad K \times 1$ $p(\mathbf{x}_n | \mathbf{z}_n, \mathbf{W}, \sigma^2) = \mathcal{N}(\boldsymbol{\mu}_n, \sigma^2 \mathbf{I}_D)$

• Instead of a linear mapping Wz_n , the z_n to x_n mapping can be defined as a nonlinear mapping (variational autoencoders, kernel based latent variable models).

- PPCA has several benefits over PCA, some of which include
 - Can use suitable distributions for \times n to better capture properties of data.
 - Parameter estimation can be done faster without eigen-decomposition (using ALT-OPT/EM algos)
 - In PCA, eigen vector are orthogonal but in ppca we don't have such requirement.
- If the *z_n* were known, it just becomes a probabilistic version of the multi-output regression problem.

- Consider an LVM with latent variables and parameters. Trying to estimate parameters without also estimating the latent variables (by marginalizing them) is difficult.
- Consider a complex prob. density (without any latent vars) for which MLE is hard.

What is EM Doing?

- The MLE problem was $\Theta_{MLE} = \operatorname{argmax}_{\Theta} \log p(\mathbf{X}|\Theta) = \operatorname{argmax}_{\Theta} \log \sum_{\mathbf{z}} p(\mathbf{X}, \mathbf{Z}|\Theta)$ which is Incomplete data log likelihood
- What EM (and ALT-OPT in a crude way) did is max of CLL: $\Theta_{MLE} = \underset{\Theta}{\operatorname{argmax}} \mathbb{E}[\log p(X, Z|\Theta)]$
- But we did not solve the original problem. Is it okay?
- Assume $p_z = p(Z|X, \Theta)$ and q(Z) to be some prob distribution over Z, then $\log p(X|\Theta) = \mathcal{L}(q, \Theta) + KL(q||p_z)$.

$$\mathcal{L}(q,\Theta) = \sum_{Z} q(Z) \log \left\{ \frac{p(X,Z|\Theta)}{q(Z)} \right\} \text{ and } KL(q||p_{Z}) = -\sum_{Z} q(Z) \log \left\{ \frac{p(Z|X,\Theta)}{q(Z)} \right\}$$

- Since KL is always non-negative log(p $X| \ge L$ (q, Θ), so L is a lower-bound on ILL.
- Thus if we maximize L (q, Θ), it will also improve log(p X|)
- Let's maximize L (q, Θ) w.r.t. q with Θ fixed at Θ old
- $\hat{q} = \operatorname{argmax}_{q} \mathcal{L}(q, \Theta^{\text{old}}) = \operatorname{argmin}_{q} K \widehat{L}(q | | p_{z}) = p_{z} = p(\mathbf{Z} | \mathbf{X}, \Theta^{\text{old}})$
- Now let's maximize L (q, Θ) w.r.t. Θ with q fixed.

$$\Theta^{\text{new}} = \operatorname{argmax}_{\Theta} \mathcal{L}(\hat{q}, \Theta) = \operatorname{argmax}_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log\left\{\frac{p(X, Z|\Theta)}{p(Z|X, \Theta^{\text{old}})}\right\}$$
$$= \operatorname{argmax}_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log p(X, Z|\Theta)$$
$$= \operatorname{argmax}_{\Theta} \mathbb{E}_{p(Z|X, \Theta^{\text{old}})} [\log p(X, Z|\Theta)]$$

The EM Algorithm in its general form

 Maximization of L (q, Θ) w.r.t. q and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977) constituents.

The EM Algorithm

- Initialize Θ as $\Theta^{(0)}$, set t = 1
- Step 1: Compute posterior of latent variables given current parameters $\Theta^{(t-1)}$

$$p(\boldsymbol{z}_n^{(t)}|\boldsymbol{x}_n, \Theta^{(t-1)}) = \frac{p(\boldsymbol{z}_n^{(t)}|\Theta^{(t-1)})p(\boldsymbol{x}_n|\boldsymbol{z}_n^{(t)}, \Theta^{(t-1)})}{p(\boldsymbol{x}_n|\Theta^{(t-1)})} \propto \text{prior} \times \text{likelihood}$$

Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

$$\Theta^{(t)} = \arg \max_{\Theta} \mathcal{Q}(\Theta, \Theta^{(t-1)}) = \arg \max_{\Theta} \sum_{n=1}^{N} \mathbb{E}_{p(\boldsymbol{x}_{n}^{(t)} | \boldsymbol{x}_{n}, \Theta^{(t-1)})} [\log p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n}^{(t)} | \Theta)]$$

$$\bullet \text{ If not yet converged, set } t = t+1 \text{ and go to step } 2.$$

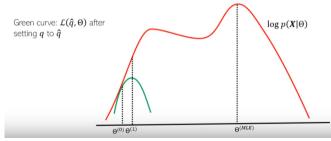
The Expected CLL

- Expected CLL in EM is given by (assume observations are i.i.d.) $\mathcal{Q}(\Theta, \Theta^{old}) = \sum_{n=1}^{N} \mathbb{E}_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta^{old})} [\log p(\boldsymbol{x}_n, \boldsymbol{z}_n | \Theta)]$ $= \sum_{n=1}^{N} \mathbb{E}_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \Theta^{old})} [\log p(\boldsymbol{x}_n | \boldsymbol{z}_n, \Theta) + \log p(\boldsymbol{z}_n | \Theta)]$
- In resulting expressions, replace terms containing z_n 's by their respective expectations, e.g.,

•
$$\boldsymbol{z}_n$$
 replaced by $\mathbb{E}_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \widehat{\Theta})}[\boldsymbol{z}_n]$
• $\boldsymbol{z}_n \boldsymbol{z}_n^{\mathsf{T}}$ replaced by $\mathbb{E}_{p(\boldsymbol{z}_n | \boldsymbol{x}_n, \widehat{\Theta})}[\boldsymbol{z}_n \boldsymbol{z}_n^{\mathsf{T}}]$

• However, in some LVMs, these expectations are intractable to compute and need to be approximated (beyond the scope of this presentation)

- As we saw, EM maximizes the lower bound L (q, $\Theta)$ in two steps
- Step 1 finds the optimal q setting it the posterior of Z given current Θ
- Step 2 maximizes L (q, $\Theta)$ w.r.t. Θ which gives a new $\Theta.$



• Assume obs $x_n \in R^D$ as a linear mapping of a latent var $z_n \in R^K$ + Gaussian noise

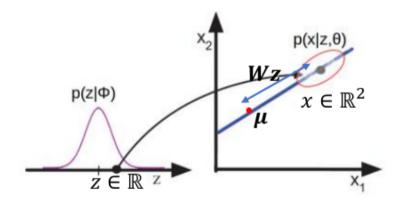
$$\boldsymbol{x}_n = \boldsymbol{\mu} + \boldsymbol{W} \boldsymbol{z}_n + \boldsymbol{\epsilon}_n$$

• Equivalent to saying
$$p(\mathbf{x}_n | \mathbf{z}_n, \boldsymbol{\mu}, \boldsymbol{W}, \sigma^2) = \mathcal{N}(\boldsymbol{\mu} + \boldsymbol{W} \mathbf{z}_n, \sigma^2 I_D)$$

- Assume a zero-mean Gaussian prior on z_n
- Joint distr. of x_n and z_n is Gaussian (since $p(x_n|z_n)$ and $p(z_n)$ are individually Gaussian) and the marginal distribution of x_n will be Gaussian.

$$p(\boldsymbol{x}_n | \boldsymbol{W}, \sigma^2) = N(\boldsymbol{x}_n | \boldsymbol{\mu}, \boldsymbol{W} \boldsymbol{W}^\top + \sigma^2 I_D)$$

Pictorial



Learning PPCA using EM

- Ignoring for notational simplicity, ILL is $p(\mathbf{x}_n | \mathbf{W}, \sigma^2) = N(\mathbf{x}_n | \mathbf{0}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^2 I_D)$
- Can maximize ILL but requires solving eigen-decomposition (PRML: 12.2.1)
- EM will instead maximize expected CLL, with CLL given by

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n | \mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n | \mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n | \mathbf{z}_n, \mathbf{W}, \sigma^2) + \log p(\mathbf{z}_n)\}$$

Using
$$p(\mathbf{x}_n | \mathbf{z}_n, \mathbf{W}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{D/2}} \exp\left[-\frac{(\mathbf{x}_n - \mathbf{W}\mathbf{z}_n)^\top (\mathbf{x}_n - \mathbf{W}\mathbf{z}_n)}{2\sigma^2}\right], \ p(\mathbf{z}_n) \propto \exp\left[-\frac{\mathbf{z}_n^\top \mathbf{z}_n}{2}\right] \text{ and simplifying}$$

$$\mathsf{CLL} = -\sum_{n=1}^N \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\mathbf{x}_n||^2 - \frac{1}{\sigma^2} \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{x}_n + \frac{1}{2\sigma^2} \mathsf{tr}(\mathbf{z}_n \mathbf{z}_n^\top \mathbf{W}^\top \mathbf{W}) + \frac{1}{2} \mathsf{tr}(\mathbf{z}_n \mathbf{z}_n^\top) \right\}$$

Learning PPCA using EM

- The EM algo for PPCA alternates between two steps:
 - Compute conditional posterior of z_n given parameters Θ

 $p(\boldsymbol{z}_n | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}, \sigma^2) = \mathcal{N}(\boldsymbol{\mathsf{M}}^{-1} \boldsymbol{\mathsf{W}}^\top \boldsymbol{x}_n, \sigma^2 \boldsymbol{\mathsf{M}}^{-1}) \qquad (\text{where } \boldsymbol{\mathsf{M}} = \boldsymbol{\mathsf{W}}^\top \boldsymbol{\mathsf{W}} + \sigma^2 \boldsymbol{\mathsf{I}}_K)$

- Maximize the expected CLL $-\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^{2} + \frac{1}{2\sigma^{2}} ||\mathbf{x}_{n}||^{2} - \frac{1}{\sigma^{2}} \mathbb{E}[\mathbf{z}_{n}]^{\top} \mathbf{W}^{\top} \mathbf{x}_{n} + \frac{1}{2\sigma^{2}} tr(\mathbb{E}[\mathbf{z}_{n}\mathbf{z}_{n}^{\top}] \mathbf{W}^{\top} \mathbf{W}) + \frac{1}{2} tr(\mathbb{E}[\mathbf{z}_{n}\mathbf{z}_{n}^{\top}]) \right\}$
- Taking derivative of expected CLL w.r.t. W and setting to zero gives

$$\mathbf{W} = \left[\sum_{n=1}^{N} \mathbf{x}_n \mathbb{E}[\mathbf{z}_n]^{\top}\right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}]\right]^{-1}$$

• Required expectations can be found from the conditional posterior of z_n

$$p(\boldsymbol{z}_{n}|\boldsymbol{x}_{n}, \boldsymbol{\mathsf{W}}) = \mathcal{N}(\boldsymbol{\mathsf{M}}^{-1}\boldsymbol{\mathsf{W}}^{\top}\boldsymbol{x}_{n}, \sigma^{2}\boldsymbol{\mathsf{M}}^{-1}) \text{ where } \boldsymbol{\mathsf{M}} = \boldsymbol{\mathsf{W}}^{\top}\boldsymbol{\mathsf{W}} + \sigma^{2}\boldsymbol{\mathsf{I}}_{K}$$
$$\mathbb{E}[\boldsymbol{z}_{n}] = \boldsymbol{\mathsf{M}}^{-1}\boldsymbol{\mathsf{W}}^{\top}\boldsymbol{x}_{n}$$
$$\mathbb{E}[\boldsymbol{z}_{n}\boldsymbol{z}_{n}^{\top}] = \mathbb{E}[\boldsymbol{z}_{n}]\mathbb{E}[\boldsymbol{z}_{n}]^{\top} + \operatorname{cov}(\boldsymbol{z}_{n}) = \mathbb{E}[\boldsymbol{z}_{n}]\mathbb{E}[\boldsymbol{z}_{n}]^{\top} + \sigma^{2}\boldsymbol{\mathsf{M}}^{-1}$$

Full EM algo for PPCA

- Specify K, initialize W and σ^2 randomly. Also center the data $(\mathbf{x}_n = \mathbf{x}_n \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n)$
- E step: For each n, compute $p(z_n|x_n)$ using current W and σ^2 . Compute exp. for the M step

$$p(\boldsymbol{z}_n | \boldsymbol{x}_n, \boldsymbol{\mathsf{W}}) = \mathcal{N}(\boldsymbol{\mathsf{M}}^{-1} \boldsymbol{\mathsf{W}}^\top \boldsymbol{x}_n, \sigma^2 \boldsymbol{\mathsf{M}}^{-1}) \quad \text{where } \boldsymbol{\mathsf{M}} = \boldsymbol{\mathsf{W}}^\top \boldsymbol{\mathsf{W}} + \sigma^2 \boldsymbol{\mathsf{I}}_K$$
$$\mathbb{E}[\boldsymbol{z}_n] = \boldsymbol{\mathsf{M}}^{-1} \boldsymbol{\mathsf{W}}^\top \boldsymbol{x}_n$$
$$\mathbb{E}[\boldsymbol{z}_n \boldsymbol{z}_n^\top] = \operatorname{cov}(\boldsymbol{z}_n) + \mathbb{E}[\boldsymbol{z}_n] \mathbb{E}[\boldsymbol{z}_n]^\top = \mathbb{E}[\boldsymbol{z}_n] \mathbb{E}[\boldsymbol{z}_n]^\top + \sigma^2 \boldsymbol{\mathsf{M}}^{-1}$$

• M step: Re-estimate W and σ^2

$$\mathbf{W}_{new} = \left[\sum_{n=1}^{N} \mathbf{x}_n \mathbb{E}[\mathbf{z}_n]^{\top}\right] \left[\sum_{n=1}^{N} \mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}]\right]^{-1}$$

$$\sigma_{new}^2 = \frac{1}{ND} \sum_{n=1}^{N} \left\{ ||\mathbf{x}_n||^2 - 2\mathbb{E}[\mathbf{z}_n]^{\top} \mathbf{W}_{new}^{\top} \mathbf{x}_n + \operatorname{tr}\left(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}] \mathbf{W}_{new}^{\top} \mathbf{W}_{new}\right) \right\}$$

• Set $\mathbf{W} = \mathbf{W}_{new}$ and $\sigma^2 = \sigma_{new}^2$. If not converged (monitor $p(\mathbf{X}|\Theta)$), go back to E step

Thank You