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Latent Variable

® In generative model in unsupervised learning each data point x, is associated with a
latent variable.

® Clustering: The cluster id z, (discrete, or a K-dim one-hot rep, or a vector of cluster
membership probabilities)

¢ Dimensionality reduction: The low-dim representation z, € R
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Generative Models with Latent Variables

® A typical generative model with latent variables might look like this
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Latent Variable Model

® p(z,| ¢): A suitable distribution based on the nature of z,.
® p(xp|zn, 0): A suitable distribution based on the nature of x,.
® |n this generative model, observations x,, assumed generated via latent variables z,.

® The unknowns in such latent var models (LVMs) are of two types
- Global variables: Shared by all data points ( 6 and ¢ in the previous diagram)
- Local variables: Specific to each data point (z, 's in the previous diagram)
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Parameter Estimation for Generative LVM

® how do we estimate the parameters of a generative LVM?

O—o—@

® we can make a guess what the value of each z, and then estimate 6 and ¢.

N

® The guess about z, can be in one of the two forms
- A “hard” guess — a fixed value (some “optimal” value of the random variable z, )
- The “expected” value E[z,] of the random variable z,.
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Parameter Estimation for Generative LVM

e Can we estimate parameters (6 , ¢) = © (say) of an LVM without estimating z, ?
® |n principle yes, but it is harder
® Given N observations, x,, n = 1,2, ... , N, the MLE problem for © will be

N N
argmaxz log p(x,]0) = argmax Z log Z p(xp, 2,]|0)
g} n=1 e n=1 -

® p(xn,2n|©) = p(2a|®) p(xn | 20, 0)

® The log of sum doesn’t give us a simple expression; MLE can still be done using gradient
based methods but update will be complicated. ALT-OPT or EM make it simpler by
using guesses of z,'s
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Probabilistic Principal Component Analysis (PPCA)

® Probabilistic PCA (PPCA) is example of a generative latent var model

® Assume a K-dim latent var z, mapped to a D-dim observation x, via a prob. mapping

¢

® p(znld)= N(0.l)
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Probabilistic mapping

® Probabilistic mapping means that will be not exactly but somewhere around the mean.

D x K mapping matrix
Kx1

D x 1 mean of
the mapping ""TL = WZTL
p(x, |2, W,02) = N (u,,0°1p)

® |nstead of a linear mapping Wz, , the z, to x, mapping can be defined as a nonlinear
mapping ( variational autoencoders, kernel based latent variable models).
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PPCA over PCA

® PPCA has several benefits over PCA, some of which include
- Can use suitable distributions for x n to better capture properties of data.
- Parameter estimation can be done faster without eigen-decomposition (using
ALT-OPT/EM algos)
- In PCA, eigen vector are orthogonal but in ppca we don't have such requirement.

® |f the z, were known, it just becomes a probabilistic version of the multi-output regression
problem.
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Need for EM

® Consider an LVM with latent variables and parameters. Trying to estimate parameters
without also estimating the latent variables (by marginalizing them) is difficult.

® Consider a complex prob. density (without any latent vars) for which MLE is hard.

11/24



What is EM Doing?

The MLE problem was Omre = argmax log p(X10) = argmgxlOgZZP(X,Zl(D)
which is Incomplete data log likelihood
What EM (and ALT-OPT in a crude way) did is max of CLL:

Opie = argmax E[log p(X, Z]|0)]

But we did not solve the original problem. Is it okay?
Assume p, = p(Z|X, ©) and q(Z) to be some prob distribution over Z, then

log p(X|©) = L(q,0) + KL(q||pz)
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£(3.0) = £79@log{L22 aq ki (qllp,) = 37 q(2)log {222

¢ Since KL is always non-negative log(p X|)> L (q, ©), so L is a lower-bound on ILL.
® Thus if we maximize L (q, ©), it will also improve log(p X|)

® Let's maximize L (q, ©) w.r.t. g with © fixed at ©old

o 0= argmax,£(q,0°") = argmingKL(qllp,) = p, = p(Z|X,0°)

® Now let's maximize L (q, ©) w.r.t. © with q fixed.
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new _ A — old M
e argmaxeL(g,0) = argmaxe 2 P(ZIX.675) log {p(zlx, @old)

argmaxg Z p(Z|X,0°%) log p(X, Z|©)
zZ
argmaxg [Ep(Z‘X, @um)[log p(X,Z|0)]
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The EM Algorithm in its general form

® Maximization of L (q, ©) w.r.t. g and © gives the EM algorithm (Dempster, Laird,
Rubin, 1977) constituents.
The EM Algorithm
Q Initialize ©® as O get t =1

@ Step 1: Compute posterior of latent variables given current parameters @(t—1)

p(250D)p(x, 2}, 80— )

(1) (t-1)y _
plza’xm &) FEACLE!

o prior x likelihood
© Step 2: Now maximize the expected complete data log-likelihood w.r.t. ©

N
ol = arg max 0(0,001) = arg méaxz E 20, -1y 108 P(Xn, 2t e)]
=1

@ If not yet converged, set t = t + 1 and go to step 2.
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The Expected CLL

® Expected CLL in EM is given by (assume observations are i.i.d.)

N
Q(6,0%) = Z]Ep(znu,,_eo*d}[logP("‘n-zn|9)]

n=1

N
= Y E,x,.000) 108 P(xn|20, ©) + log p(2,|©)]
n=1
® |n resulting expressions, replace terms containing z,'s by their respective expectations,
eg.,

" z, replaced by Ep(znlxn- @) [2,]

. T - _ T
Z,Z, ' replaced by EP(anxn-@)[z“z“ |

® However, in some LVMs, these expectations are intractable to compute and need to be

approximated (beyond the scope of this presentation)
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EM: An lllustration

® As we saw, EM maximizes the lower bound L (g, ©) in two steps
® Step 1 finds the optimal q setting it the posterior of Z given current ©
® Step 2 maximizes L (q, ©) w.r.t. © which gives a new ©.

Green curve: L(§, ©) after
setting q to §

log p(X|0)

POrE) QUILE)
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Probabilistic PCA (PPCA)

Assume obs x, € RP as a linear mapping of a latent var z, € RK 4+ Gaussian noise
x,=u+Wz, +¢€,

. _‘ -
Equivalent to saying p(xplzn, m,W,0%) = N(p+ Wzp,0%Ip)
Assume a zero-mean Gaussian prior on z,

Joint distr. of x, and z,is Gaussian (since p(x,|z, ) and p(z, ) are individually Gaussian)
and the marginal distribution of x, will be Gaussian.

p(xnlw,az) = N(x, |1, wWwr' + O-ZID)
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Learning PPCA using EM

® |gnoring for notational simplicity, ILL is

p(xnlw; Jz) = N(xn |0, wwT + JZID)

e Can maximize ILL but requires solving eigen-decomposition (PRML: 12.2.1)

® EM will instead maximize expected CLL, with CLL given by
N

Iogp(X.Z|W, Iong(x,, ,\Wn)*lognp (xnlZns Wc Z{Iogp (xn|zn, W, o )+Iogp(z,.)}

n=1 n=1

] and simplifying

' xn—Wzp, T xp—Wzp -
USIﬂg P(Xn|Zn, W, 0%) = m exp [—%]‘ p(zn) o< exp [—

N

D 1 1 4 T 1 1 I
CLL = — Z {E log a4 ﬁﬂx,,“z ;zn W' x, 4 2—J2tr(z,,z,,' w' W) + 2tr(z,.z_,, )}

n=1
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Learning PPCA using EM

® The EM algo for PPCA alternates between two steps:
- Compute conditional posterior of z, given parameters ©
p(znlxn, W, 0%) = N(M™'W " x,,, M) (where M = W W + o°lx)

- Maximize the expected CLL

Y (D 1 1 Y 1
2 2 T - Ty T 1 - T
,,Ezl { 5 logo” + 557 [1%n] 0_2..,[2”] W x, + 2(thr'(...[z.,z,. W' W) + 2tr(_,[zﬂz“ ])}

® Taking derivative of expected CLL w.r.t. W and setting to zero gives

N —1.

W = Z x,E[z,] ' Z E[znz, ]

n=1
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® Required expectations can be found from the conditional posterior of z,

plzalxn, W)
E[z.]

Elz,z, ]

NM W x,,0’M ) where M = W' W + 271

M 'w x,
Elz,])E[z,]

+ cov(z,) = E[z,]E[z,] " + o*M 7!
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Full EM algo for PPCA

e Specify K, initialize W and o2 randomly. Also center the data (x, = x, — 7 Zle Xp)

o E step: For each n, compute p(z,|x,) using current W and o2. Compute exp. for the M step

plzolxs, W) = N(M'WTx, 6’M™Y)  where M =W'W + oI
fz,] = M'w'x,
Elz,z,] = cov(z,)+ E[z,.]_T.[Z,.]—r = E[zn]E[zn]T +o?M!

@ M step: Re-estimate W and o2

W, = |:Zx,,:;[z.,]-:| Z.Z—j[z‘,zﬁ.]:|

1

ot = % i {||x,,||2 — 2E[z,] TW, x, + tr (.—;[z..z,] ]w;ww,,mj}
=1

o Set W =W,,, and 0% = 02,,,. If not converged (monitor p(X|©)), go back to E step

new-*
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